环球关注:如何用低代码搭建训练一个专业知识库问答GPT机器人
距离上篇文章《低代码xChatGPT,五步搭建AI聊天机器人》已经过去3个多月,收到了很多小伙伴的关注和反馈,也帮助很多朋友快速低成本搭建了ChatGPT聊天应用,未曾想这一段时间GPT热度只增不减,加上最近国内外各种LLM、文生图多模态模型密集发布,开发者们也有了更高的要求。比如如何训练一个自己的GPT应用,如何结合GPT和所在的专业领域知识来搭建AI应用,像心理咨询助手、个人知识库助手等,看目前网上这方面资料还不多,今天我们就来抛个砖试试。
(资料图片仅供参考)
目前的预训练方式主要如下几种:
基于OpenAI的官方LLM模型,进行fine-tune(费用高,耗时长)基于开源的Alpaca.cpp本地模型(目前可在本地消费级显卡跑起来,对自己硬件有信心也可以试试)通过向量数据库上下文关联(轻量级,费用可控,速度快,包括昨天OPENAI官方昨天刚放出来的示例插件chatgpt-retrieval-plugin,也采用的这种方式)低代码实现的AI问答机器人效果如下:
这次还是用腾讯云微搭低代码作为应用搭建平台,来介绍如何快速搭建一个垂直领域的知识库GPT问答机器人,今天的教程尽量避开了各种黑科技的封装库(没有Langchain/Supabase/PineconeSDK全家桶),尝试从最基本的实现原理来展开介绍,尽量让大家知其所以然。新手开发者也可以试试,与其看各种GPT热闹,不如Make your hands dirty
一、准备工作
在开始搭建垂直知识库的问答机器人前,你需要做以下准备:
微信小程序账号:如果您还没有微信小程序账号,可以在微信公众平台注册(如果没有小程序,也可以发布为移动端H5应用)开通腾讯云微搭低代码:微搭低代码是腾讯云官方推出的一款低代码开发工具,可以直接访问腾讯云微搭官网免费开通注册OpenAI账号:OpenAI账号注册也是免费的,不过OpenAI有地域限制,网上方法很多在此不赘述。注册成功后,可以登录OpenAI的个人中心来获取API KEY
一个支持向量匹配的数据库(本文以开源的PostgreSQL
为例,你也可以使用Redis
,或者NPM的HNSWlib
包)关于向量数据库,目前可选择的方式有好几种,可以使用PostgreSQL安装vector向量扩展,也可以使用Redis的Vector Similarity Search,还可以直接云函数使用HNSWLib库,甚至自行diy一个简单的基于文件系统的余弦相似度向量数据库,文末的 github/lowcode.ai也有简单示例代码,仅做参考交流不建议在生产环境使用。
本教程适用人群和应用类型:
适用人群:有前后端基础的开发者(有一定技术背景的非开发者也可以体验)应用类型:小程序 或 H5应用(基于微搭一码多端特性,可以发布为Web应用,点击原文链接可体验作者基于微搭搭建的文档GPT机器人)二、搭建聊天机器人界面
如何使用低代码进行界面搭建的详细过程,在之前的文章中《低代码xChatGPT,五步搭建AI聊天机器人》已经有过详细的教程介绍,这里就不再继续展开。
另外,大家也可以使用微搭官方的聊天模板,这样的话界面这一步直接跳过,开箱即用,附微搭低代码GPT聊天应用模板地址
完成界面配置之后,大家重点关注下图中页面设计模块的”发送“按钮的事件配置即可,在后续会提到。
三、配置后端逻辑
与之前机器人的实现直接调用远程API不同,这次由于需要针对专业的领域知识进行预处理以及向量化,重点会涉及3个部分:
读取待训练的文档数据并进行向量化,之后存入向量数据库通过query的向量化结果与数据库向量进行相似度匹配,并返回关联文本结果结合返回的关联文本和query来构建上下文生成prompt
可以通过下图了解向量搜索实现GPT Context的大致原理:
由上图可见,主要是两个处理流程,一个文档数据的向量化预处理,一个是查询时的向量匹配和Context构造处理,这两个处理我们都可以使用腾讯云低代码的云函数来实现(当然第一步的预处理也可以在本地电脑完成)
1. 将知识库文档数据向量化
首先,将所需要的预处理的知识库内容放在某个目录下,遍历知识库目录下的所有文档文件(本文文件格式以markdown
为例),将文本分块后结构化存储在本地json文件。
如果数据量小,分块后的结构化数据也可以直接放在内存中,本地化json主要便于在大量文本预处理时,遇到网络等异常时,能够在断点处重启预处理
关键代码如下:
本教程涉及的完整代码已放到https://github.com/enimo/lowcode.ai中,可按需下载试验,也可直接上传到微搭低代码的云函数中运行)
function splitDocuments(files, chunkSize) {let docSize = chunkSize || 1000;let textString = "";let index = 0;let documents = [];for(let i = 0, len = files.length; i < len; i++) {if(files[i] && files[i].content) {textString = files[i].content;}else {textString = fs.readFileSync(files[i], "utf8");}textString = textString.replace(/\n|\r/g, " ").replace(/<.*?>/g,"") let start = 0; while (start < textString.length) { const end = start + docSize; const chunk = textString.slice(start, end); documents.push({ docIndex: index++, fileIndex: files[i].fileIndex, filename: files[i].filename || files[i], content: chunk }); start = end;} } fs.writeFileSync("./docstore.json", JSON.stringify(documents)); return documents;}
上述代码用途主要是在得到遍历后的文件路径数组files
后,对文件进行切块处理,分块大小可按需调整,一般建议在1000~2000之间(切换主要为兼容GPT API的单次token限制及成本控制)
其次,对分块的文本进行向量化并存入向量数据库,关键代码如下:
async function initVector(sql, docs){ const maxElements = docs.length || 500; // 最多处理500个 for (let j = 0; j < maxElements; j++ ) { const input = docs[j].content; const filename = docs[j].filename; const fileIndex = docs[j].fileIndex const docIndex = docs[j].docIndex // 通过根据训练日志返回断点docIndex,调整 docIndex 的值,确保从断点继续向量化 if(docIndex >= 0 && docIndex < 1000 ){ log("start embedding fileIndex: ", fileIndex, "docIndex: ", docIndex, "filename:", filename); const embedding = await embedding(input); const embeddingArr = "[" + embedding + "]"; const metadata = { filename, "doclength": maxElements, index: j }; const insertRet = await sql` INSERT INTO documents ( content, appcode, metadata, embedding ) VALUES ( ${input}, "wedadoc", ${metadata}, ${embeddingArr} )` await delay(1000); // 如果embedding API并发请求限制,可设置随机数sleep } else { continue; } } return true;}
上述文本向量化的存储过程中,涉及到调用OpenAI的embedding
模型进行向量转化,这里使用text-embedding-ada-002
模型(这个文本向量化过程也可以不使用OpenAI的官方模型,有部分开源模型可代替)
async function embedding (text) { const raw_text = text.replace(/\n|\r/g, " "); const embeddingResponse = await fetch( OPENAI_URL + "/v1/embeddings", { method: "POST", headers: { "Authorization": `Bearer ${OPENAI_API_KEY}`, "Content-Type": "application/json" }, body: JSON.stringify({ input: raw_text, model: "text-embedding-ada-002" }) } ); const embeddingData = await embeddingResponse.json(); const [{ embedding }] = embeddingData.data; log({embedding}); return embedding;}
以上,一个文档知识库的向量化预处理就基本完成了,接下来看看怎么实现基于query的搜索逻辑。
2. 实现query的向量化搜索
我们在上一步中已经完成了文本数据的向量化存储。接下来,可以基于用户提交的query来进行相似度搜索,关键代码如下:
async function searchKnn(question, k, sql){ const embedding = await embedding(question); const embeddingArr = "[" + embedding + "]"; const result = await sql`SELECT * FROM match_documents(${embeddingArr},"wedadoc", 0.1, ${k})` return result;}
上述代码将query同样转化为向量后,再去上一步向量化后的数据库中进行相似搜索,得到最终与query最匹配的上下文,其中有一个预定义的SQL函数match_documents
,主要用作文本向量的匹配搜索,具体会在后面介绍,在 github/lowcode.ai中也有详细的定义和说明。
最后,我们工具拿到的搜索返回值,来构造GPT 3.5接口的prompt上下文,关键代码如下:
async function getChatGPT (query, documents){ let contextText = ""; if (documents) { for (let i = 0; i < documents.length; i++) { const document = documents[i]; const content = document.content; const url = encodeURI(document.metadata["filename"]); contextText += `${content.trim()}\n SOURCE: ${url}\n---\n`; } } const systemContent = `You are a helpful assistant. When given CONTEXT you answer questions using only that information,and you always format your output in markdown. `; const userMessage = `CONTEXT: ${contextText} USER QUESTION: ${query}`; const messages = [ { role: "system", content: systemContent }, { role: "user", content: userMessage } ]; const chatResponse = await fetch( OPENAI_URL + "/v1/chat/completions", { method: "POST", headers: { "Authorization": `Bearer ${OPENAI_API_KEY}`, "Content-Type": "application/json" }, body: JSON.stringify({ "model": "gpt-3.5-turbo", "messages": messages, "temperature": 0.3, "max_tokens": 2000, }) } ); return await chatResponse.json();}
上述代码中核心是上下文的构造,由于GPT3.5之后的接口,支持指定role,可以将相关系统角色的prompt放在了systemContent
中,至于/v1/chat/completions
接口入参说明由于之前的文章中有过介绍,这里也不赘述,有任何疑问大家也可以到「漫话开发者」公众号留言询问。
以上,query的搜索部分完成了,到此所有后端接口的核心逻辑也都完成了,可以看到几个关键流程的实现是不是很简单呢。
3. 将所涉及代码部署到微搭低代码的云函数中
完成后端代码开发后,接下来就是把相应的运行代码部署到微搭低代码的云函数中,综上可知,主要是两部分的后端代码,一部分文档的向量化并入库(这部分本地Node环境运行亦可),另一部分就是实现搜索词匹配构建prompt后调用GPT接口查询了。
微搭低代码的云函数入口,可以在数据源->APIs->云函数
中找到,如下图所示:
如果第一次使用云函数,需要点击图中链接跳转到云开发云函数中进行云函数的新建,如下图所示:
新建完成后,点击进入云函数详情页,选择”函数代码“Tab,然后在下面的提交方法下拉框中选择”本地上传ZIP包“即可上传前面完成的后端逻辑代码,也可以直接下载 github/lowcode.ai打包后上传。上传成功后,第一次保存别忘了点击”保存并安装依赖“来安装对应的npm包。
在完成云函数新建和代码上传后,回到上一步的微搭数据源APIs界面中刷新页面,即可看到刚刚新建好的云函数openai,选中该云函数,并按要求正确填写对应的出入参结构,测试方法效果并保存后,即可在第一章的前端界面”发送“按钮中绑定调用数据源事件进行调用了。
4. 完成开发联调,发布应用
完成上述后端逻辑以及云函数配置后,可以切到编辑器的页面设计模块,回到第一章的界面设计来进行事件的配置,完成后点击编辑器右上角的“发布”按钮,可以选择发布到你已绑定的小程序,也可以直接发布Web端H5/PC应用。
至此,一个垂直知识库的AI问答机器人应用基本就搭建完成了。
四、附录说明
1 数据库PostgreSQL的初始化
本文中采用的PostgreSQL作为向量数据库,其中涉及到的建表结构定义参考如下:
create table documents ( id bigserial primary key, content text, -- corresponds to Document.pageContent metadata json, -- corresponds to Document.metadata embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed);
涉及的SQL函数match_documents
的定义参考如下,其中query_embedding
表示query关键词的向量值,similarity_threshold
表示相似度,一般情况下要求不低于0.1
,数值越低相似度也越低,match_count
表示匹配后的返回条数,一般情况下2条左右,取决于前文的分块chunk
定义大小。
create or replace function match_documents ( query_embedding vector(1536), similarity_threshold float, match_count int)returns table ( id bigint, content text, metadata json, similarity float)language plpgsqlas $$begin return query select documents.id, documents.content, documents.metadata, 1 - (documents.embedding <=> query_embedding) as similarity from documents where 1 - (documents.embedding <=> query_embedding) > similarity_threshold order by documents.embedding <=> query_embedding limit match_count;end;$$;
所有上述的内容数据库SQL schema
以及部分训练备用文本数据都已经放到github,大家可以关注定期更新,按需采用: github/lowcode.ai
2 体验试用
可以通过Web端体验作者搭建的Web版文档机器人,同时得益于微搭低代码的一码多端,同步发布了一个小程序版本,大家可以扫码体验。
由于目前自建向量库的性能局限以及有限的预处理文档数据,响应可能比较慢,准确性偶尔也会差强人意,还请各位看官谅解,抽时间再持续优化了,本文还是以技术方案的探讨交流为主。
3 最后
通过本教程的介绍,你已经基本熟悉了如何使用微搭低代码快速搭建垂直知识库的AI问答机器人了,有任何疑问可以关注「漫话开发者」公众号留言。
用低代码创建一个GPT的聊天应用很简单,实现一个垂直领域的AI问答应用也不难。未来不管被AI替代也好,新的开发者时代来了,先动手试试,make your hands dirty first, enjoy~
关键词:
-
环球关注:如何用低代码搭建训练一个专业知识库问答GPT机器人
2023-03-31 -
【全球速看料】宁夏灵武对国家能源集团宁夏煤业公司双马一矿与孙某供水纠纷所涉新种和拟种苗木已采取有效保护措施
2023-03-30 -
辽宁省葫芦岛市2023-03-30 17:09发布大风蓝色预警
2023-03-30 -
长沙开福区沙坪街道:“零容忍” 坚决拆违控违_世界热推荐
2023-03-30 -
全球热头条丨我国成功发射宏图一号01组卫星
2023-03-30 -
儋州命名56个“市直机关五星级党支部”
2023-03-30 -
昆仑万维入选『中国AIGC领域最值得关注的50家公司』榜单 微资讯
2023-03-30 -
今日热搜:太突然!暴涨!
2023-03-30 -
锡装股份:博莱克威奇是公司客户,公司会持续关注与公司主业相关的项目动态
2023-03-30 -
天天观天下!突发!外媒:美军两架“黑鹰”直升机在肯塔基州坠毁
2023-03-30 -
当前资讯!国家信息中心谢国平:三大动力助推商用车市场2023年开始复苏
2023-03-30 -
当前速读:福特将推全新纯电轿跑SUV 或命名“Capri”
2023-03-30 -
【环球报资讯】Mysteel:3月近40城松绑楼市,重点城市成交回暖
2023-03-30 -
法式风格概念(法式风格设计有哪些理念)|环球观察
2023-03-30 -
世界热讯:白银公安破获特大贩毒案 缴获毒品海洛因980余克 斩断一条从境外流向内地多省份贩毒通道
2023-03-30 -
对冲基金巨头Citadel拟今年恢复开设东京办事处,正申请日本市场运营牌照
2023-03-30 -
张坤、刘格菘等顶流持仓曝光_当前时讯
2023-03-30 -
渤海银行被通报擅自划扣预售金致商品房逾期难交付|环球快看点
2023-03-30 -
舒兰市法特白鹅产业园首批雏鹅入园
2023-03-30 -
热点在线丨阅明中文网登录_阅明中文网
2023-03-30 -
天天快资讯丨大美!一起去西藏波密,看桃花!
2023-03-29 -
环球观焦点:《魔咒之地》将推前传DLC 5月26日发售
2023-03-29 -
这个家庭不寻常!一家五口,常年都是“志愿红” 环球简讯
2023-03-29 -
当前讯息:恩里克说想换掉的世界杯名单球员中一人?马卡:他说的是法蒂
2023-03-29 -
环球焦点!十一届三中全会公报全文pdf_十一届三中全会公报全文
2023-03-29 -
支付宝升级生态服务商助力体系 提供超百亿元6大支持
2023-03-29 -
世界快消息!有色金属板块涨多跌少 沪铅主力跌近1%
2023-03-29 -
文学经典系列:徐志摩散文经典全集_关于文学经典系列:徐志摩散文经典全集简介_世界新资讯
2023-03-29 -
世界通讯!第十五届江苏省农民合作社产品展销会将在南京举办
2023-03-29 -
蔡英文拟“过境”窜访美国,国台办:必将采取措施坚决回击
2023-03-29
-
守住网络直播的伦理底线
2021-12-16 -
石窟寺文化需要基于保护的“新开发”
2021-12-16 -
电影工作者不能远离生活
2021-12-16 -
提升隧道安全管控能力 智慧高速让司乘安心
2021-12-16 -
人民财评:提升消费体验,服务同样重要
2021-12-16 -
卫冕?突破?旗手?——武大靖留给北京冬奥会三大悬念
2021-12-16 -
新能源车险专属条款出台“三电”系统、起火燃烧等都可保
2021-12-16 -
美术作品中的党史 | 第97集《窗外》
2021-12-16 -
基金销售业务违规!浦发银行厦门分行等被厦门证监局责令改正
2021-12-16 -
保持稳定发展有支撑——从11月“成绩单”看中国经济走势
2021-12-16